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We exhibit and detail the properties of self-similar solutions for inviscid compressible
ablative flows in slab symmetry with nonlinear heat conduction which are relevant
to inertial confinement fusion (ICF). These solutions have been found after several
contributions over the last four decades. We first derive the set of ODEs – a nonlinear
eigenvalue problem – which governs the self-similar solutions by using the invariance
of the Euler equations with nonlinear heat conduction under the two-parameter Lie
group symmetry. A sub-family which leaves the density invariant is detailed since these
solutions may be used to model the ‘early-time’ period of an ICF implosion where a
shock wave travels from the front to the rear surface of a target. A chart allowing
us to determine the starting point of a numerical solution, knowing the physical
boundary conditions, has been built. A physical analysis of these unsteady ablation
flows is then provided, the associated dimensionless numbers (Mach, Froude and
Péclet numbers) being calculated. Finally, we show that self-similar ablation fronts
generated within the framework of the above hypotheses (electron heat conduction,
growing heat flux at the boundary, etc.) and for large heat fluxes and not too large
pressures at the boundary do not satisfy the low-Mach-number criteria. Indeed both
the compressibility and the stratification of the hot-flow region are too large. This
is, in particular, the case for self-similar solutions obtained for energies in the range
of the future Laser MegaJoule laser facility. Two particular solutions of this latter
sub-family have been recently used for studying stability properties of ablation fronts.

1. Introduction
Ablation fronts appear when a directed high-energy density is released in a dense

material. As a result, a supersonic thermal wave propagates and, as the sound
speed ahead approaches the celerity of the thermal front, becomes subsonic while
a shock wave is generated. At the same time, an expansion wave takes place and
propagates in the opposite direction. This is the deflagrative heat wave (Pakula &
Sigel 1985) in which the material is strongly accelerated while the density increases
in the front and strongly decreases in the rear. This process is used to strongly
compress a pellet in inertial confinement fusion (ICF) (Atzeni & Meyer-ter-Vehn
2004) in which the directed high-energy density is provided by a set of laser beams.
However, the energy is not deposited uniformly on the pellet, perturbations are
generated and may grow with time. These hydrodynamic instabilities at the ablation
front called ‘ablative Rayleigh–Taylor’ (RT) instabilities, when the flow is accelerated,
or ‘ablative Richtmyer–Meshkov’ instabilities (Goncharov 1999), when acceleration
is negligible, are a key issue in ICF since they can inhibit burn. The first estimate
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Figure 1. Density (top) and temperature (bottom) profiles obtained from a numerical
simulation of a 0.1 mm thickness CH2 planar foil illuminated with laser light (left). The
same profiles obtained from the self-similar solution detailed in this paper have also been
represented on the right-hand side. The thermal front propagates from right to left for the
numerical simulation and from left to right for the self-similar solution. Profiles are plotted with
respect to the x-coordinate. Self-similar profiles show a striking resemblance to the numerical
simulation profiles.

of an ablation front instability growth has been given by Nuckolls et al. (1972) and
the first model developed by Bodner (1974). Since then, a large number of studies
have been devoted to this phenomenon. Stability analysis requires us to define or
build a mean flow from which a perturbation analysis can be carried out. In that
respect, Manheimer & Colombant (1982) built steady-state planar ablative flows and
related flow quantities to laser characteristics. Kull & Anisimov (1986) developed a
discontinuity model for describing incompressible RT instabilities with ablative mass
and heat flow. The stability analysis of this mean flow was carried out analytically,
whereas the analysis of the continuous version of this model, i.e. with a nonlinear
diffusion term, was solved numerically (Kull 1989). This quasi-incompressible steady
state provided the framework for many further stability analyses. Le Métayer &
Saurel (2006) determined analytical solutions of steady ablation flows both within the
low Mach number quasi-isobaric assumption and the fully compressible case.

However, mean flows encountered in ICF are usually neither steady nor quasi-
incompressible. Instead they are closely related to self-similar behaviours as Velikovich
et al. (1998) pointed out. This is illustrated in figure 1 (left) where we have represented
density (top) and temperature (bottom) profiles obtained from a numerical simulation,
at short times, of a 0.1 mm thickness CH2 planar foil illuminated with laser light.
Density and temperature profiles obtained from the self-similar solution detailed in
this paper have also been represented in figure 1 (right). From these figures, it is clear
that the flow is not steady and becomes closer to a self-similar profile as time goes
on. Note that the density maximum keeps roughly the same level. In this simulation,
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the heat flux imposed at the boundary is piecewise linear and the slopes increase with
time.

Marshak (1958) first found exact self-similar solutions from Euler’s equations
including radiation for constant density or constant temperature. Anisimov (1970)
studied the case of a thermal wave in a two-temperature plasma, and gave the
temperature, density and velocity variations as power laws in the time variable. Barrero
& Sanmartı́n (1977) and Sanmartı́n & Barrero (1978a ,b) expressed explicitly these
variations for a two-temperature model with laser energy deposition evolving linearly
in time. J.-M. Reisse, in Brun et al. (1977), exhibited, from numerical simulations,
self-similar solutions of Euler’s equations with nonlinear heat diffusion, provided that
boundary conditions for the pressure and the heat flux are specific power laws in time.
A first attempt to find these solutions had been made by Bajac (1973), but it seems that
Y. Saillard, in an unpublished work of 1983, was the first to work out and write down
the set of ODEs governing this family of self-similar solutions and to solve numerically
this system with a finite-difference method (see also Boudesocque-Dubois et al. 2001,
2006; Abéguilé et al. 2006). Similar solutions of this type have also been determined
by other workers. Reinicke & Meyer-ter-Vehn (1991) found self-similar solutions
for strong point explosions provided that the ambient gas density decays with a
given power of the radius. Sanz, Piriz & Tomasel (1992 ) studied a nonlinear heat-
conduction one-temperature model with a different set of boundary conditions, and
provided approximate piecewise solutions from asymptotic expansions. Murakami,
Sakaiya & Sanz (2007) studied another family of self-similar solutions to model the
acceleration phase.

The objective of this paper is twofold. We first describe in detail the present family
of self-similar solutions of the Euler equations with nonlinear heat conduction, for the
case of electron heat conduction. This discussion is quite general and is not related to
a specific flow. Indeed it goes beyond the sole scope of ICF-type flows. We focus on
the subsonic sub-family which leaves the density invariant. This solution is a nonlinear
wave made up of two parts, an isothermal shock wave (Landau & Lifchitz 1987)
bringing the material to high temperature and pressure, followed by an ablation front
and an expansion wave. Since the flow through the front is subsonic, this solution
is close to a deflagration wave (Thompson 1988). A chart allowing us to determine
the starting point of a numerical solution, knowing the physical boundary conditions,
has been built with more than 300 self-similar solutions for electron heat conduction
and an adiabatic exponent γ = 5/3. An approximate scaling law, which connects the
absolute Mach number at the ablation front to the heat flux at the origin is given. In
a second step, the deflagration density-invariant sub-family of self-similar solutions is
applied to ICF. Such a deflagration wave is encountered in the implosion of a pellet
in ICF during the ‘early-time’ period where a shock wave travels from the front to
the rear surface of the target. The importance of this ‘early-time’ period has been
emphasized by several authors (Aglitskiy et al. 2002; Velikovich et al. 2000), since
perturbations growing during this period will set the initial conditions or the seeds for
the subsequent acceleration phase. The deflagration density-invariant sub-family may
be used to model such a flow. Self-similar compatible boundary conditions are then
imposed at the origin of the Lagrangian coordinate, assimilated here to the critical
surface of laser energy absorption. This hypothesis is clearly an approximation in the
case of a direct illumination by laser light, but exact for a radiative heat conduction in
the case of irradiation by X-ray light, a configuration which will be studied elsewhere.
An example of the determination of self-similar solution constants is described by
using a multiphysics numerical simulation of a flow relevant to the Laser MegaJoule



154 C. Boudesocque-Dubois, S. Gauthier and J.-M. Clarisse

(LMJ) laser facility. Finally we show that these LMJ self-similar solutions do not
satisfy the constraints of the low-Mach-number approximation (Paolucci 1982; Majda
& Sethian 1985; Fröhlich & Gauthier 1993) often used in stability analyses of ablation
fronts in ICF, although quasi-incompressible self-similar solutions may be obtained
for lower heat fluxes and/or larger pressures at the boundary. These families of
self-similar solutions – whether they be density or temperature invariant – may be
of interest in other configurations relevant to ICF (Pakula & Sigel 1985). Since these
solutions are to be used for carrying out stability analyses (Abéguilé et al. 2006), a
high accuracy is required for mean flow quantities and their derivatives. A numerical
algorithm, based on an auto-adaptive multidomain Chebyshev method, has therefore
been devised (Gauthier et al. 2005) and is summarized in Appendix B.

2. Governing equations and self-similar formulation
2.1. One-dimensional Euler equations with nonlinear heat conduction

Consider the motion of an inviscid heat-conducting fluid, obeying the polytropic
equation of state:

p = ρRT, E =
R

γ − 1
T, (2.1)

where ρ is the fluid density, p the fluid pressure, E the specific internal energy, T

the fluid temperature, R the gas constant and γ the fluid adiabatic exponent. For
one-dimensional motions in the x-direction, the Euler equations of motion can be
written, in Lagrangian form, as

∂

∂t

(
1

ρ

)
− ∂

∂m
vx = 0,

∂

∂t
vx +

∂

∂m
p = 0,

∂

∂t

(
1

2
vx

2 + E
)

+
∂

∂m
(pvx + ϕx) = 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.2)

where the Lagrangian coordinate m is such that dm = ρ dx, and vx is the fluid
velocity. The heat flux ϕx is

ϕx = −κ(ρ, T )
∂T

∂x
= −κ(ρ, T ) ρ

∂T

∂m
, (2.3)

where the thermal conductivity coefficient κ depends on the density ρ and temperature
T through

κ(ρ, T ) = κ0

(
ρ

ρc

)−µ (
T

Tc

)ν

, (2.4)

and µ, ν are fluid constants to be chosen such that µ � 0 and ν �= 1, ρc and Tc

are characteristic density and temperature of the flow, κ0 is the thermal conductivity
coefficient for ρ = ρc and T = Tc , which gives the thermal diffusivity coefficient χ =
(γ−1)κ0/γρcR. System (2.2) is supplemented by initial and boundary conditions which
will be defined later.

2.2. Self-similar formulation

Following Zel’dovich & Raizer (1967), we observe that the only dimensionless
combination that can be obtained from the Lagrangian coordinate m, the time t
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and the parameters of the problem ρc , R, χ and the isothermal sound speed c∗, is

ξ =
m t−α

ρc b
with b = χ1−αc2α−1

∗ . (2.5)

The characteristic temperature Tc is then defined as Tc = c2
∗/R. We are looking for

the Lie group symmetry under which system (2.1)–(2.4) is invariant. This group of
similitude depends on seven parameters and may be written as

m′ =λEm m, vx
′ =λEvx vx, t ′ =λEt t,

ρ′ =λEρ ρ, p′ = λEp p,

T′ =λET T, ϕx
′ =λEϕx ϕx,

⎫⎬
⎭ (2.6)

where we have introduced one more parameter λ, which will be determined later. The
fact that (2.1)–(2.4) should be unchanged by the transformation (2.6) introduces five
constraints, which are written as

Em =−µ Eρ + (2ν − 1) Evx
,

Et =−(µ + 1)Eρ + 2(ν − 1) Evx
, Ep =Eρ + 2 Evx

,

ET =2 Evx
, Eϕx

=Eρ + 3 Evx
.

⎫⎬
⎭ (2.7)

Any dependent variable H(m, t) is transformed under the group as

H′(m′, t ′) = λEh H(λEm m, λEt t). (2.8)

The free parameter λ is defined in such a way that H depends on only a single
variable. This is achieved by using t ∝ λ−Et . Then the self-similar variable is defined
by (2.5) where α = Em/Et . Introducing this self-similar variable ξ and time power law
dependencies for the physical variables, we obtain the reduced function definitions

ρ = ρc tα−β G(ξ ),

vx = b tβ−1 V(ξ ),

T =
b2

R
t2(β−1) �(ξ ),

ϕx =ρcb
3 tα−β+3(β−1) �(ξ ),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

with

α =
−Eρµ + Evx

(2ν − 1)

−Eρ(µ + 1) + 2Evx
(ν − 1)

, β =
−Eρ(µ + 1) + Evx

(2ν − 1)

−Eρ(µ + 1) + 2Evx
(ν − 1)

. (2.10)

The system obtained from (2.1)–(2.4) reduces then to the fourth-order ODE

d

dξ

(
α ξ

G
+ Vx

)
=

β

G
, (2.11a)

d

dξ
(α ξ Vx − G �) = (α + β − 1) Vx, (2.11b)

d

dξ

(
α ξ

[
Vx

2

2
+

�

γ − 1

]
− G � Vx − �x

)
= [α + 2(β − 1)]

(
Vx

2

2
+

�

γ − 1

)
, (2.11c)

d�

dξ
= − �x

G1−µ �ν
. (2.11d)

The similarities leaving invariant the equations of the problem form a two-parameter
group G(Eρ,Evx ). The subgroup G(0,Evx ) leaves invariant the density, whereas the
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subgroup G(Eρ,0) leaves invariant the velocity and the temperature. The one-parameter
group of similitude G(Eρ,0) admits several invariants. Let f (m, t) be an absolute
invariant (Moran & Gaggioli 1968) which satisfies f (m′, t ′) = f (m, t). Expanding
f (m′, t ′) in a Taylor series, it is straightforward to show that the invariant is the
solution of the following equation

(
∂m′

∂λ

∣∣∣∣
λ=1

∂

∂m
+

∂t ′

∂λ

∣∣∣∣
λ=1

∂

∂t

)
f (m, t) = 0. (2.12)

The solution to this equation is simply any function F of the variable ξ = m/tα . In
particular, the reduced functions (2.9) are invariants.

Sets of initial and boundary conditions which are compatible with such a self-similar
formulation (2.9) are such that (Brun et al. 1977):

ρ(m, t = 0) = CI
ρ m(α−β)/α −→ G(ξ → ∞) = CI

ρ ξ (α−β)/α,

vx(m, t = 0) = CI
v m(β−1)/α −→ Vx(ξ → ∞) = CI

v ξ (β−1)/α,

T(m, t = 0) = CI
T m2(β−1)/α −→ �(ξ → ∞) = CI

T ξ 2(β−1)/α,

ϕx(m, t = 0) = CI
ϕ m(α−β+3(β−1))/α −→ �x(ξ → ∞) = CI

ϕ ξ (α−β+3(β−1))/α,

⎫⎪⎪⎬
⎪⎪⎭

(2.13)

ρ(m = mB, t) = CB
ρ tα−β −→ G(ξ = mBt−α) = CB

ρ ,

vx(m = mB, t) = CB
v tβ−1 −→ Vx(ξ = mBt−α) = CB

v ,

T(m = mB, t) = CB
T t2(β−1) −→ �(ξ = mBt−α) = CB

T ,

ϕx(m = mB, t) = CB
ϕ t3(β−1) −→ �x(ξ = mBt−α) = CB

ϕ .

⎫⎪⎪⎬
⎪⎪⎭ (2.14)

2.3. Sub-family for invariant density

At time t = 0, the fluid of uniform density ρc is assumed to occupy the half-space
m � 0, while a heat flux starts being applied along the plane m = 0. Initial and
boundary conditions are

ρ = ρc

vx = 0

T = 0

⎫⎪⎬
⎪⎭ for m � 0, (2.15)

p = p∗

(
t

t∗

)2(α−1)

ϕx = ϕ∗

(
t

t∗

)3(α−1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for m = 0 (2.16)

respectively, where p∗, ϕ∗ and t∗ are characteristic boundary pressure, heat flux and
time. The choice of initial and boundary conditions given by (2.15)–(2.16) imposes
on us the use of the subgroup G(0,Evx ). In this case, α = β = (2ν − 1)/(2ν − 2), and
system (2.11) is given by

d Y
dξ

= F(ξ, Y ), (2.17)
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in terms of the unknown YT = (G V � �). The function F is given by

F(ξ, Y ) =

⎛
⎜⎜⎜⎜⎝

G2 N/D

αξ N/D

F

(α ξ F − 2(α − 1) �) /(γ − 1) − α ξ G � N/D

⎞
⎟⎟⎟⎟⎠ , (2.18)

with:

N =(α − 1) V + GF,

D=α2 ξ 2 − G2 �,

F =−� Gµ−1 �−ν.

⎫⎪⎪⎬
⎪⎪⎭ (2.19)

Applying the 
-theorem (Barenblatt 1979), the seven parameters ρc , R, γ , χ , c∗, p∗
and ϕ∗ lead us to retain the three dimensionless numbers

Bϕ =
ϕ∗

ρcc∗3
, Bp =

p∗

ρcc∗2
, γ . (2.20)

The coefficient Bϕ may be written as Bϕ = φ/(ρ v3)v3/c3 = M3/Cl, where M is a
Mach number and Cl the Clausius number, which is the ratio of the kinetic energy
flux to the thermal conduction flux. For the solutions investigated in this work,
the Clausius number is larger or smaller than one. Note that the parameter Bϕ is
similar to the parameter β−1 introduced by sanz et al. (1992). The corresponding
dimensionless forms of (2.15) and (2.16) are

G(ξ → +∞) = 1,

V(ξ → +∞) = 0,

�(ξ → +∞) = 0,

⎫⎪⎬
⎪⎭ (2.21)

and

(G�) (ξ = 0) = Bp,

�(ξ = 0) = Bϕ,

}
(2.22)

respectively. We consider solving the ODEs (2.17) in the domain [0, +∞) with
boundary conditions (2.21)–(2.22). System (2.17) possesses different kinds of
singularity. In the physical configuration considered (for adiabatic exponent γ < 3),
only one case – the case D = 0 – can be encountered. Moreover, if we admit a
zero temperature, the solution of (2.17) can be expressed explicitly: V ∝ ξ 1−1/α and
G ∝ ξ−1/α + const. Note that D (2.19) changes sign over the domain [0, +∞) since
D(ξ → ∞) > 0 and D(ξ = 0) < 0. The problem raised by the presence of the
singularity D = 0 may be circumvented by introducing a shock-wave discontinuity at
an arbitrary point, say ξs .

Restriction to deflagration density-invariant sub-family

In the absence of any known analytical solution to system (2.17), we must have
recourse to numerical methods for integrating (2.17) or the corresponding initial-
and boundary-value problems (IBVPs). Numerical simulations of such IBVPs in the
cases of radiation (Marshak 1958) or electron (Brun et al. 1977) heat conductions
have shown that, for sufficiently low values of the boundary heat flux, the heated
fluid region is bounded by an isothermal shock wave ‘together with an infinitesimal
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radiation wavelet’ (Marshak 1958). Here we restrict ourselves to flows for which this
wave combination is of negligible thickness, so that it may be replaced by a non-
isothermal shock wave at the forefront of the heated fluid, thus leading to the jump
relations (A1). This is the sole approximation conceded in this work. The mean-flow
jump relations (A1) applied to the self-similar solution (2.9) lead to the expressions

GD =
(γ + 1)W2

γW2 − R
, VD =

W2 + R
(γ + 1)W

, PD =
W2 + R
γ + 1

, (2.23)

for the downstream values of the self-similar functions G, V and P. In these formulae,
the quantity R is given by

R =
√

W 4 − 2(γ − 1)(γ + 1)W �xD , (2.24)

where W is the self-similar shock-front velocity whose expression comes as

W = t1−αwx = t1−α

(
∂x

∂t
(m, t)

)
ξ

∣∣∣∣∣
ξs

=

(
αξ

G(ξ )
+ V(ξ )

)∣∣∣∣
ξs

. (2.25)

Integrating system (2.17) from +∞ to ξs , with conditions at infinity provided by
relations (2.21), leads to D(ξ+

s ) = D(ξ → ∞) > 0. On the other hand, the Rankine–
Hugoniot relations at ξs give that D(ξ−

s ) is negative, for 1 � γ � 3, so that the
singularity D = 0 is effectively eliminated. An obvious consequence is that system
(2.17) has now to be integrated over the domain [0, ξs), with boundary conditions
given by (2.22) and (2.23). This defines a nonlinear eigenvalue problem.

3. Obtaining the invariant-density sub-family
For a given value of the shock wave location ξs , integrating system (2.17) from ξ−

s

to the origin ξ = 0 furnishes pressure and heat flux boundary values, which, however,
may not necessarily be the values Bp and Bϕ defined by (2.20). In order to obtain
these values, we have recourse to a shooting method. Note that knowing the values of
Bp and Bϕ , we may think of integrating system (2.17) from 0 to ξ−

s . With the help of
Bp and Bϕ and having in mind that all the components of Y (0) are not known, the
shooting method may be started from the origin and stopped at a point where the
Rankine–Hugoniot relations are best satisfied. The main drawback of this approach
is that the ranges to be explored for the missing components of Y (0) – say G(0) and
V(0) – are a priori infinite – 0 < G(0) < +∞ and −∞ < V(0) < +∞.

Backward numerical integration of system (2.17) from ξ−
s to 0, using either explicit

or implicit methods, turns out to be unstable. The rather elaborate procedure that
we now detail is a direct consequence of this. A possible approach for tackling this
difficulty is suggested by previous studies (Barrero & Sanmartı́n 1977; Sanmartı́n &
Barrero 1978a; Sanz et al.) on self-similar solutions to system (2.2). Therein, two
regimes for the flow within the region between the origin (ξ = 0) and the shock
wave front (ξ = ξs) were identified: (i) a regime where convection is dominant which
corresponds to the flow region immediately downstream of the shock wave front; and
(ii) a regime where heat conduction effects are important which is associated to the
part of the flow extending from the origin, where the external heat flux is applied,
towards increasing ξ -abscissae. Similar remarks led Y. Saillard, in an unpublished
work of 1983, to introduce an arbitrary interior point ξf and to consider, on the
domain (ξf , ξs), the system of ODEs (2.17) without heat conduction. The boundary
conditions (2.21) and the Rankine–Hugoniot relations (A2) without conduction give
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a starting value for (G V �) at ξ−
s . Integrating (2.17) without heat conduction from

ξ−
s to ξ+

f yields
(
G(ξ+

f ) V (ξ+
f ) �(ξ+

f )
)
, the corresponding values at ξ−

f being deduced

from continuity arguments, with �(ξ−
f ) given by �(ξ−

f ) = −
(
G1−µ�ν(d�/dξ )

)
(ξ−

f ).
System (2.17) can thus be integrated from ξ−

f to 0.
This way of proceeding provides a first guess for a solution which depends

on the two parameters ξf and ξs – these parameters having to be adjusted for
recovering the values (2.20) of Bp and Bϕ . The approximations Y thus obtained
suffer, however, a critical defect in that their derivatives dY/dξ are discontinuous at
ξf . Indeed, these derivative values are involved in the computation of the solution
perturbations (Abéguilé et al. 2006). Therefore, better approximations are required,
leading us to devise the strategy developed in Appendix B, where an iterative method
is used within the framework of a Chebyshev spectral method. A relaxation method
is also used in order to minimize the error on the Rankine–Hugoniot relations at the
shock wave. This algorithm has been implemented in the numerical code Ramses. As
a result, the system of ODEs for the reduced function (2.17) is accurately solved:
the error is of the order of 10−9, except at the shock-wave location where it reaches
10−4−10−5, for a fifteen-digit floating-point number implementation. Such an accuracy
is obtained using 8 to 12 subdomains (usually 10), depending on the parameter values,
with 50 Chebyshev polynomials. Fewer than 100 iterations, usually 35, are required.

As already stated, we are interested in the solution of (2.17) where a shock wave,
which bounds the domain, is followed by a thermal front. Across this shock, both
the fluid density and velocity (owing to the zero viscosity of the physical model) are
discontinuous. However, a nonlinear thermal conductivity dictates the shape of the
thermal front (Zel’dovich & Raizer 1967, chap. 10, §3). Indeed the temperature profile
is continuous and exhibits a preheating ‘tongue’ (cf §2.3) of estimated thickness

�ξs =
γ − 1

ν

G �ν

V
, (3.1)

assuming that the conductivity depends only on the temperature. This expression is
obtained by retaining only the terms depending on the temperature in the energy
equation and by looking for a standing-wave solution and then integrating twice.
This thickness is, in any case, very small and the isothermal shock is described well
by a perfect discontinuity. As we see in figure 2, the error between the solution at
the shock front and the Rankine–Hugoniot relations may be related to the estimate
of the thickness of the isothermal shock wave given by (3.1). In this figure, we have
plotted the relative error on the Rankine–Hugoniot relations versus the estimated
thickness of the isothermal shock wave given by (3.1). We have varied successively
the exponents ν and γ , and obtained two monotonic curves, very close to each other.
This shows that the error on the Rankine-Hugoniot at the shock wave is due to the
isothermal shock wave thickness that is neglected.

The code Ramses computes reduced functions by solving system (2.17). However,
this system does not take into account the physical aspect of the mean flow. It is thus
necessary to introduce some criteria of eligibility. Indeed, it has been noticed that
there is an upper bound on the ξf values, ξmax

f , beyond which we cannot obtain a
physical solution with G(ξ ) > 0. Furthermore, it has been noticed also that for flows
obtained with small values of ξf , the heat flux at the origin could be negative. This
allows us to obtain the lower value of ξf , ξmin

f , such that the heat flux at the origin
is positive: �(ξ = 0) � 0. With this criterion, we may thus eliminate the numerically
accessible flows which are not representative of an ablative deflagration. Besides, it
turns out that this condition is not sufficient. For very small values of ξs and ξf ,
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Figure 2. Relative error on the Rankine–Hugoniot relations vs . the thickness of the isothermal
shock wave given by (3.1). The curve ν = 5/2 has been obtained by varying the polytropic
exponent γ , whereas the curve γ = 5/3 has been obtained by varying the exponent ν. The
monotonicity of the two curves shows the relevance of the estimate (3.1) as the source of error
on the Rankine–Hugoniot relations (2.23).
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Figure 3. Eligible values of the origin ξf and the end ξs of the shocked-fluid zone, in the case
of an electron heat conduction and γ = 5/3. The lower and upper bounds on ξf are estimated
as functions of ξs (3.2).

we observe that in certain cases the ablation front has merged with the origin, i.e.,
the solution does not describe the expansion wave, hence does not agree with the
assumptions of the model. Consequently, by denoting ξa the position of the ablation
front (defined as the location of the density maximum), a new criterion appears to
be: ξa > 0.

Figure 3 represents, in the case of electron heat conduction and γ = 5/3, about 300
pairs of data points (ξf , ξs). For a given value of ξs (on the abscissa), we represent all
the eligible values of ξf . The upper and lower values of ξf are approximated by the
following power laws

ξmin
f =

{
a1 ξb1

s , ξs � �min,

a2 ξb2
s , ξs � �min,

ξmax
f =

{
A1 ξB1

s , ξs � �max,

A2 ξB2
s , ξs � �max.

(3.2)

All the coefficients a1, b1, . . . , �max depend on γ . For γ = 5/3, we have

a1 = 0.4, b1 = 2.8, a2 = 0.7, b2 = 3.5 (�min ≈ 0.45),
A1 = 1.2, B1 = 1.75, A2 = 1, B2 = 1 (�max ≈ 0.78).

}
(3.3)

As an illustration of the whole method, two examples of self-similar solutions are
given in figures 4 and 5. These two electron heat conduction solutions are obtained
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Figure 4. Structure of a self-similar flow in the case of a steep density gradient,(
Bϕ = 0.26, Bp = 0.03, γ = 5/3

)
. Density ρ, temperature T and velocity v are represented

(a) vs . space at a given time, (b) by their reduced functions G, � and V . We can distinguish
(i) the undisturbed fluid zone (ξ > ξs), (ii) the quasi-isentropic compression zone, (iii) the
ablation layer and (iv) the conduction-dominated zone. This solution is within the range
of energy of the LMJ facility. Note that the temperature of the fluid at rest is equal to
zero.

for µ = 0, ν = 5/2 in (2.4), or equivalently α = 4/3 in (2.5), and for a monatomic
gas (γ = 5/3). The remaining dimensionless numbers Bp and Bϕ are determined
from a one-dimensional numerical simulation of the direct laser illumination of a
planar target within the energy range of the LMJ facility. In such configurations, the
self-similar solutions do not describe the flow expansion past the critical surface on
which depend the values of the solution boundary parameters Bp and Bϕ .

In the present case, the numerical simulation has been carried out with the
multiphysics hydrocode FCI1 (Fortin & Canaud 2000). The parameters Bp and Bϕ

are then determined in order to match, as closely as possible, the numerical simulation
profiles. The empirical procedure determining the physical quantities involved in the
expressions of Bp and Bϕ (2.20) is the following. The knowledge of the laser intensity
law gives the characteristic time t∗ to be the time after which a second shock wave
propagates from the front to the rear of the target. Then, we define a location x∗,
where the deposited laser power is maximum at this particular time t∗. At this point
(x∗, t∗), we retrieve the heat flux ϕ∗, fluid pressure p∗, thermal diffusivity coefficient
χ and gas constant R. Using (2.20), we deduce the dimensionless number values
Bp and Bϕ . We thus obtain the self-similar solution represented in figure 4. This
solution corresponds to a large extent to the conduction region for a given location
of the shock wave ξs . We can distinguish in figure 4(b) four zones: (i) the undisturbed
fluid zone (ξ > ξs); (ii) the quasi-isentropic compression zone comprised between the
ablation layer and the shock-wave front; (iii) the ablation layer with steep density
gradients; and (iv) the conduction-dominated zone extending from the origin up to
the ablation layer. However, the characteristic time t∗ is approximately defined and
a slight variation of its value leads to different values for (Bp , Bϕ). An example of
such a variation is provided in (Abéguilé et al. (2006), table I). Another example of
self-similar solution is given in figure 5 in which the heat flux law is different from
the previous example. This case (figure 5) corresponds to a small value of ξf for a
given ξs: as a result, the density gradient is soft.
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Figure 5. Structure of a self-similar flow in the case of a soft density gradient,(
Bϕ = 0.26, Bp = 0.92, γ = 5/3

)
. Density ρ, temperature T and velocity v are represented

(a) vs . space at a given time, (b) by their reduced functions G, � and V . Note that the
temperature of the fluid at rest is equal to zero.

3.1. Chart
(
Bϕ, Bp, γ = 5/3

)
As already said, there is a duality between the physical quantities (Bϕ, Bp), which
stipulate the boundary conditions at the origin, and the numerical parameters (ξf , ξs),
which define the locations of the origin and the end of the shocked-fluid zone,
respectively. The numerical solution starts with the latter quantities whereas the
definition of an experimental configuration deals with the former. It is then of
interest to build a chart establishing the relationship between both types of quantities.
Such a chart, built from about 300 flows, is represented in figure 6 for electron heat
conduction and an adiabatic exponent γ = 5/3. Thus for a particular experimental
configuration, characterized by the two boundary conditions (Bϕ, Bp), we readily
obtain the numerical parameter values (ξf , ξs). The black lines correspond to constant
values of the shock-wave locations, ξs , and red lines correspond to constant values
of ξf , the location of the origin of the shocked-fluid zone. Three regions can be
observed in this figure. First, a region where the lines with constant values of ξs are
horizontal, i.e., do not depend on the value of Bϕ . In other words, varying the heat
flux at the origin only changes, at least in this region, the location of the ablation
front. Then a transition region, where both values (Bϕ, Bp) vary and an asymptotic
region where maximal values of Bϕ are reached. We have also plotted the straight
line ‘V (ξ = 0) = 0’ in this chart. Flows located on the right-hand side of this line are
characterized by a negative velocity at the origin and flows located on the left-hand
side have a positive value at the origin. The smaller the velocity at the origin, the
larger the expansion wave. Obviously, the larger the expansion wave, the smaller
the density at the origin and the steeper the ablation front. This type of solution
occurs if the pressure at the boundary is not too large. Notice that the blue and
green diamonds correspond to the flows displayed in figures 4 and 5, respectively.
They illustrate the previous remarks. In figure 4, the self-similar solution describes a
strong expansion wave. In such a case, the density at the origin is close to zero. An
opposite case is provided in figure 5 where the velocity at the origin is close to zero,
the expansion wave is weaker and the ablation front density gradient is softer. This
is the case when the boundary pressure is large with respect to the value of the heat
flux Bϕ .
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Figure 6. A chart relating the parameters (Bϕ , Bp) and (ξf , ξs), allowing us to determine
the starting point of a numerical solution (ξf , ξs), knowing the physical boundary conditions
(Bϕ , Bp). This chart has been built from more than 300 self-similar solutions for electron heat
conduction ν = 5/2 and an adiabatic exponent γ = 5/3. Three regions may be distinguished:
a region where the lines with constant values for ξs are horizontal, then a transition region,
where both values (Bϕ, Bp) vary and an asymptotic region where the maximal values of Bϕ

are reached. The straight line defined by ‘V (ξ = 0) = 0’ separates solutions characterized by
negative (right-hand side) and positive (left-hand side) values of the velocity at the origin
V (ξ = 0).

4. Physical analysis
Here, we start by defining the dimensionless numbers which characterize the self-

similar flows. Then two sub-families obtained by varying the pressure at the boundary
Bp and the adiabatic exponent γ , are analysed in terms of these numbers in detail.

4.1. Dimensionless numbers

Length, velocity and acceleration

Several length scales may be defined in order to characterize the present deflagration
flows. All these length scales have the following form: �(m, t) = tαL(ξ ), where � is a
length and L the associated reduced function. It is natural in such a problem to use
a local length scale based on the temperature gradient

�T (m, t) ≡
∣∣∣∣ 1

T (m, t)

∂T

∂x
(m, t)

∣∣∣∣
−1

=

∣∣∣∣ ρ(m, t)

T (m, t)

∂T

∂m
(m, t)

∣∣∣∣
−1

= tα �(ξ )

G(ξ )

∣∣∣∣d�(ξ )

dξ

∣∣∣∣
−1

≡ tαLT (ξ ). (4.1)

This length scale depends on the self-similar coordinate ξ . We then choose to
use a global length scale, namely the value of LT at the point ξT where the
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temperature-gradient length scale is minimal. This abscissa ξT also defines the location
of the ablation front. Thus there are three different remarkable points, whose locations
are close to each other, but with different meanings. The first one is the location of
the maximum density, ξa , the second is the origin of the shocked-fluid zone, ξf , and
the third is the location of the ablation front, ξT , defined above. We also need a
transformation formula between the ξ - and the (x, t)-spaces. For a given value of ξ ,
say ξ∗, we deduce the corresponding abscissa x of the point of Lagrangian coordinate
m = ξ∗t

α through

x(m, t) = x(ξ∗ tα, t) =
tα

α

(
α ξ∗

G(ξ∗)
+ V (ξ∗)

)
+ x(0, 0). (4.2)

Equation (4.2) has been used to plot figures 4(a) and 5(a) from figures 4(b) and
5(b) with x(0, 0) = 0. The fluid velocity relative to the ablation front, defined by the
location ξT , is

v′
x(m, t) ≡ v(m, t) −

(
∂x

∂t
(m = ξ tα, t)

)
ξT

= tα−1

(
V (ξ ) − V (ξT ) − α ξT

G(ξT )

)
≡ tα−1V ′(ξ ). (4.3)

The acceleration ax(m, t) is

ax(m, t) ≡ ∂

∂t
vx(m, t) =

∂

∂t

(
tα−1V

)
= tα−2

(
(α − 1)V − α ξ

dV

dξ

)
≡ tα−2A(ξ ), (4.4)

while the ablation front acceleration in the laboratory reference frame is given by

a′
x(t) ≡

(
∂2x

∂t2
(m = ξ tα, t)

)
ξT

= (α − 1)tα−2

(
V (ξT ) +

α ξT

G(ξT )

)
≡ tα−2A′. (4.5)

Mach, Froude and Péclet numbers

The Mach number characterizes the compressibility of the flow. We first define a
Mach number with respect to the laboratory reference frame, based on the isentropic
sound speed cS , M = vx/cS . This absolute Mach number Mabs is

Mabs(ξ ) =
|V (ξ )|√
γ �(ξ )

. (4.6)

Figure 7 represents the Mach number Mabs at the point ξa where the maximum
density is reached. This absolute Mach number value depends essentially on the heat
flux at the boundary Bϕ , according to the power law

Mabs(ξa)|(Bϕ,Bp,γ ) ≈ Cf 1(γ ) × BCf 2(γ )
ϕ , (4.7)

with Cf 1(γ = 5/3) = 1.44092 and Cf 2(γ = 5/3) = −0.0484176. This kind of
dependence is also observed for other values of the exponent γ . A second Mach
number is defined based on the velocity relative to the ablation front, namely

M(ξ ) =
|V ′(ξ )|√
γ �(ξ )

. (4.8)
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Figure 7. Absolute Mach number values at the point where the maximum density is reached:
Mabs(ξa) vs . Bϕ , for γ = 5/3 and about 300 values of Bp (symbols). The Mach number
dependency on the boundary heat flux Bϕ is also shown (line). Similar dependencies are
observed for different values of γ .

The Froude number, Fr = v/
√

g �, which characterizes the relative importance of
inertial effects with respect to acceleration effects, is

Fr(ξ ) =
V ′(ξ )√
A′ L(ξ )

, (4.9)

where the length scale L may be chosen between
the minimal temperature-gradient length scale

L∇T ≡ LT (ξT ) = min
ξ

LT (ξ ), (4.10)

the hot flow region length scale

Lhot = (x(ξT tα, t) − x(0, t)) t−α, (4.11)

the cold flow region length scale

Lcold = (x(ξst
α, t) − x(ξT tα, t)) t−α. (4.12)

The Péclet number, Pe = �v/χ with χ = κ/ρ Cp , measuring the relative importance
of heat convection over heat conduction effects, is

Pe(ξ ) =
γ

γ − 1

L∇T V ′(ξ )

G(ξ )−µ−1 �(ξ )ν
. (4.13)

4.2. Analysis of two sub-families

For some insight into these self-similar ablative flow solutions, we have focused on
two particular sub-families. The first one is obtained by varying the pressure at the
boundary, i.e. Bp , the second one by varying the compressibility of the fluid, i.e. the
adiabatic exponent γ .

4.2.1. Bp-family for
(
Bϕ = 10 −2, γ = 5/3

)
For a given heat flux at the boundary Bϕ and a fixed value of the fluid adiabatic

exponent γ , we have plotted in figure 8 seven self-similar solutions for different values
of Bp , ranging from 10−2 to 0.4. Note that both the location of the shock wave ξs

and the size of the shocked-fluid region grow with the pressure at the boundary, Bp .
The value of the density G at the shock wave appears to be constant. This value
is given by (A2), and, for a small heat flux, depends essentially on the exponent
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Figure 8. Reduced functions of the Bp-family for
(
Bϕ = 10−2, γ = 5/3

)
and seven values

of Bp . From top to bottom and left to right, we have plotted the density G, pressure P,
velocity V, acceleration A, entropy exp(S/R), norm of the divergence of the velocity |∇·V |,
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γ . The maximal value reached by the density, in the vicinity of the ablation front,
varies slightly (from 7.7 to 8) and the density gradient in the ablation zone becomes
steeper as the value of the pressure Bp becomes smaller. The value of the pressure P

undergoes moderate variations in the ξ -space and is close to a straight line at least
for the highest values of Bp . The order of magnitude of the pressure is given either
by its value at the shock wave (A2) or by the value of Bp .

In the same way, the velocity V varies slightly, except for small values of Bp , its
level is given by (A2): V (ξs) ≈ 2 α ξs/(γ + 1). The smaller the velocity value at the
boundary ξ = 0, the larger the expansion wave. Using (2.11b) and (4.4), we obtain
dP/dξ = −A. Acceleration profiles are flat for large values of Bp . As the boundary
pressure decreases, a bump appears in the ablation zone which turns into a peak for
the smallest value of Bp . Hence pressure profiles in the conduction zone are not as
flat as the graphs suggest. We also note that the larger the value of Bp , the faster the
shock wave and the weaker the gradients in the ablation zone.

We have also drawn in figure 8 the Kovásznay modes (Chu & Kovásznay 1957),
namely the entropy and the divergence of the velocity (there is no vorticity in such
one-dimensional flows). The smaller the pressure Bp at the boundary, the steeper the
entropy variation in the ablation zone. We also remark that the entropy is not uniform
in the shocked-fluid region and the heat conduction is negligeable. The divergence
of the velocity ∇·V is proportional to the gradient of density, according to (2.11a):
dV/dξ = (αξ/G2)dG/dξ . It is seen to be negative and small in the shocked-fluid
region (which corresponds to an increasing density, from the shock wave to the
ablation front), and to reach its largest positive value in the ablation zone (which
corresponds to a strong density gradient in the expansion wave). The maximal value
of the velocity divergence increases when the value of the boundary pressure Bp

decreases.
The maximal Mach-number value is reached at the shock-wave front, except for the

smaller value of Bp . Its minimal value is observed in the ablation zone and decreases
when Bp increases. The same behaviour is observed with the Mach-number value
at the origin. Recall that the heat flux is strongly positive in the ablation zone, and
slightly negative in the shocked-fluid region. The temperature gradient length scale
L∇T , used to estimate the Froude and Péclet numbers, calculated with (4.1) is, in most
cases, of the order of 10−3, but may reach 10−5 for small values of Bp . It is worth
noting that the Chebyshev numerical method is able to describe solutions for which
the ratio of length scales L∇T G(ξT )/ξs is of the order of 10−3. The Froude number
reaches its minimal values in space in the ablation zone. The steeper the Froude
number profile in the ablation zone, the smaller the pressure and the velocity at the
origin. The Péclet number reaches its maximal value – although it is not very large –
in the shocked-fluid region, which is dominated by convection effects.

4.2.2. γ -family for
(
Bϕ = 10−2, Bp = 10−1

)
We have plotted in figure 9 five self-similar solutions for different values of the

adiabatic exponent γ between 1.38 and 2, and for given pressure and heat flux
boundary conditions Bp and Bϕ . We notice that the shock-wave location ξs increases
with the exponent γ , while the size of the shocked-fluid region decreases. The value of
the density G at the shock wave decreases when γ grows (from 6.3 to 3). This value is
approximately given by (A2) and depends essentially on the value of γ . The maximal
value of the density, reached in the ablation zone, strongly decreases when γ grows
(from 16 to 5). The smaller the value of γ , the steeper the density gradient in the
ablation zone. The value of the temperature � at ξ = 0 varies slightly. On the other
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Figure 9. Reduced functions of the γ -family for
(
Bϕ = 10−2, Bp = 10−1

)
and five values

of γ . From top to bottom and left to right, we have plotted the density G, temperature �,
velocity V, acceleration A, entropy exp(S/R), divergence of the velocity ∇·V , Mach number M ,
heat flux �, Froude number Fr and Péclet number Pe vs . the ξ -abscissa. See text for comments.
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hand, its value at the shock wave increases with γ and can be estimated from (A2). We
then deduce that ξs grows faster than

√
γ − 1. The temperature difference between the

hot flow and the shocked-fluid region (�(0) − �(ξs)) diminishes when the adiabatic
exponent γ grows. The more compressible the fluid, the smaller the temperature jump
at the shock wave. The overall energy available to expand the fluid is then larger,
resulting in stronger density jumps between the ablation zone and the vicinity of
the origin. We also note that, the smaller the adiabatic exponent γ , the larger the
gradients of physical quantities (density, temperature, heat flux, entropy and Mach
number). Regarding the velocity V , its global level slightly increases as γ decreases,
as indicated by (A2): the fluid velocity at the shock wave (V (ξs) ≈ 2αξs/(γ + 1))
increases when γ decreases.

As in figure 8, we have also drawn in figure 9 the Kovásznay modes (Chu &
Kovásznay 1957). The entropy behaves as the temperature, although the density
strongly decreases across the expansion wave. The divergence of the velocity is
negative and small in the shocked-fluid zone and positive and large in the ablation
zone. Thus the fluid is slightly compressed from the shock wave to the ablation front,
and strongly expanded afterward.

The minimal Mach-number value in space is reached in the ablation zone, its
maximal value at the shock wave front. The Mach number increases with the
exponent γ . Increasing the adiabatic exponent without changing the pressure at
the origin increases the pressure at the shock front and the pressure gradient between
the origin and the shock. The Froude number reaches its minimal value in the ξ -space
in the ablation zone. This value increases as the flow becomes more incompressible.
Once again, the effects of acceleration are relatively small. As already mentioned, the
Péclet number reaches its maximal value in the shocked-fluid region.

5. Application to ICF flows: the low-Mach-number approximation
As already stated in §1, most of the ablative mean flow models which have been

built and the corresponding stability analyses which have been carried out, in the
context of ablative RT or RM-instabilies in ICF, rely on a low-velocity hypothesis.
The underlying approximation is actually the ‘Low Mach number approximation’
(LM) previously developed within the framework of natural convection (Paolucci
1982). A simple argument of asymptotic analysis provides three inequalities that
guarantee the validity of the LM approximation, namely

γ M2 � 1, Fr 

√

γ M2, Pe 
 γ M2, (5.1a, b, c)

where M is a Mach number. In the context of ICF ablative flows, this approximation
was first used by Kull & Anisimov (1986) who developed a model for ablation fronts
in steady mean flows subject to an acceleration field. A hydrodynamical stability
analysis based on this ablation-flow model was subsequently performed by Kull
(1989). Within this model, ablative flows are essentially characterized by a single
dimensionless parameter Γ = g κ/v3 defined in terms of the thermal diffusivity and
the fluid velocity relative to the ablation front – ‘ablation velocity’. In this analysis, the
subsonic character of three ablation flows was checked, while the parameter Γ , which
is also written Γ = 1/(Fr2 Pe), was found to be in the range [1, 4]. Bychkov, Golberg
& Liberman (1994) also considered the stability of such flows, assuming that the
two constraints (5.1a) and (5.1b) were fulfilled although without actually performing
any check against numerical simulations or experiments. The same hypotheses, (5.1a)
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and (5.1b), were also used in the asymptotic analyses of the ablation front stability
problem undertaken in a series of papers starting with Goncharov et al. (1996).
Such assumptions were justified based on the claim that for realistic ICF pellet
implosions, the Mach number at the ablation surface is much smaller than unity and
the fluid stratification, within the density gradient length scale, is negligible. The same
approximation is also used by Piriz, Sanz & Ibañez (1997) to study discontinuous
ablation fronts. Clavin & Masse (2004) made a comparison of instabilities in ablation
front and flames by equally assuming that criteria (5.1a) and (5.1b) were satisfied.
Hence since this quasi-incompressible model is widely used for stability analyses of
ablation fronts, it is worth checking whether or not the present self-similar solutions
may fit an LM description. This analysis is performed on the whole sub-family of
self-similar solutions detailed above (figure 6). Let us recall that one of these solutions
– or one region of the plane

(
Bϕ, Bp

)
– is representative of the flows that could be

achieved with the LMJ laser. We first derive the three inequalities which guarantee
the validity of the LM approximation. The basic idea of this approximation is to
perform an asymptotic expansion in terms of a small parameter and to retain only the
first two orders. To this end, the Euler equations with nonlinear conduction (2.2) are
rewritten in the non-inertial reference frame attached to the ablation front. In this new
frame, the fluid velocity becomes v′

x = vx −wx(ξT , t), where wx(ξT , t) denotes the front
velocity in the laboratory frame, whereas an inertial acceleration g(t) ≡ ẇx(ξT , t)
appears in the momentum and energy equations. In a second step, the system is
written in a dimensionless form with the following units: � for the length, vrel for the
velocity (relative to the ablation front), ρr for the density and Tr for the temperature.
We obtain

∂

∂t

(
1

ρ

)
− ∂v′

x

∂m
= 0,

∂

∂t

(
v′

x

)
+

1

γ M2

∂p

∂m
+

g

Fr2
= 0,

∂

∂t

(
1

2
v′

x

2
+

1

γ M2
E

)
+

∂

∂m

(
1

γ M2
p v′

x +
1

γ M2

γ

(γ − 1) Pe
ϕx

)
+

g v′
x

F r2
= 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(5.2)

The Mach (M), Froude (Fr) and Péclet (Pe), dimensionless parameters are thus
defined as

M =
vrel√
γ R Tr

, F r =
vrel√
g̃ �

, P e =
γ

γ − 1

vrel �

κo/(ρr R)
, (5.3)

where g̃ is a mean value of g(t). A formal asymptotic expansion is performed by
assuming

φ = φ(0) + γM2 φ(1) + (γM2)2 φ(2), (5.4)

for φ = ρ, p, v′
x and E. The continuity equation still holds for the zero-order quantities

ρ(0) and v′ (0)
x . At the lowest order and first order, the momentum equation leads to

∂p(0)

∂m
= 0,

∂

∂t
v′ (0)

x +
∂p(1)

∂m
+

g

Fr2
= 0, (5.5a, b)

provided the Froude number is not too small, i.e. γ M2 � Fr2. In such a way, the
third term of (5.5b) is a first-order term. At the same order, the energy equation is

∂

∂t
E(0) + p(0) ∂

∂m

(
v′(0)

x +
γ

(γ − 1) Pe
ϕ(0)

x

)
= 0, (5.6)
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provided the Péclet number is not too small, i.e. γ M2 � Pe(γ − 1)/γ . As a result, a
flow satisfying the three constraints

γ M2 � 1,
γ M2

Fr2
� 1,

γ

γ − 1

γ M2

Pe
� 1, (5.7a, b, c)

may be approximated by a set of equations in which acoustic waves are no longer
solutions. In other words, the hyperbolic part of the Euler equations (2.2) or (5.2)
has been removed, the resulting set of equations being close to the incompressible
flow equations although some density variations are allowed. The next step of this
analysis is to explicitly calculate (5.7). The first criterion (5.7a) simply means that the
velocity has to be small with respect to the sound velocity, i.e. that the acoustic part
of the flow is small. The second criterion (5.7b) may be rewritten by means of the
formula

γM2

Fr2
=

γV ′2

γP/G

A′ L

V ′2 = γ
A′ L

C2
S

, (5.8)

where CS is the isentropic sound speed. This criterion will be satisfied as long as
the acceleration and the characteristic length scale are not too large and the sound
speed is large enough. Note that (5.8) is also the ratio of a characteristic length, L,
over the ‘scale height’ of the fluid C2

S/γA′, and is therefore a measure of the fluid
stratification. Consequently, several length scales may be considered, depending on
the flow region under study. Given the self-similar ablative flow structure (figure 4),
three different length scales naturally arise: the temperature gradient length scale
L∇T of (4.10), and the lengths of the hot (Lhot ) and cold (Lcold ) flow regions as given
by (4.11) and (4.12), respectively. To each of these length scales corresponds a Froude
number (4.9) and a stratification measure (5.8) of the relevant portion of the flow,
namely

γM2

Fr2
T

= γ
A′ L∇T

C2
S

,
γM2

Fr2
hot

= γ
A′Lhot

C2
S

,
γM2

Fr2
cold

= γ
A′Lcold

C2
S

. (5.9a, b, c)

Within the framework of ablation front stability studies, authors have typically
used a length scale, L0, based on the heat conduction coefficient and the ablation
velocity (Betti et al. 1996). They also define the density gradient length scale, Lm

with Lm ≈ 8L0 for ν = 5/2. The criterion (5.7b), (5.9a) is more easily satisfied
with such a definition of length scale L0, since Lm is very close to the temperature
gradient length scale, L∇T . However, the LM approximation requires that the flow
stratification be weak. It is therefore necessary to evaluate the stratification of each
of the characteristic regions of an ablative flow in order to assess the relevance of
the LM approximation. This leads us to consider the three constraints made of (5.7b)
with the definitions of (5.9). The third criterion (5.7c) may be expressed as the ratio of
an atom collision time scale to a hydrodynamic time scale, thus assessing the validity
of the hydrodynamic approximation.

Values of the four LM criteria have been represented in the plane (Bϕ, Bp) in
figure 10, where the maximum over the space variable ξ has been taken: γM2, the
stratification of the hot part of the flow γM2/Fr2

hot , of the cold part γM2/Fr2
cold

and the hydrodynamic constraint γ / (γ − 1) γ M2/Pe. Numerical values have been
rescaled with the function F(q) = tanh (2 log q) in order to bring them in the
interval [−1, +1]. It appears that, for large heat fluxes and moderate pressures at the
boundary, the self-similar solutions do not satisfy the first LM criterion (5.7a), which
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Figure 10. Plots of the maximum values in ξ of the ratios entering the four low-Mach-number
criteria (5.7a), (5.7b) with (5.9b) or (5.9c), and (5.7c), in the plane (Bϕ, Bp) for the set of

self-similar solutions of figure 6 (where µ = 0, ν = 5/2 and γ = 5/3). (a) γM2; (b) γM2/Fr2
hot ,

(c) γM2/Fr2
cold , (d) γ /(γ − 1)γM2/Pe. Ratio data have been mapped with the transform

function F(q) = tanh (2 log q) to make an easier reading of the results: the colour chart ranges
from blue (F(q) → −1) for the lowest values of the criteria (q → 0) to red (F(q) → 1) for the
largest values (q → ∞) while values close to unity (q ≈ 1) appear in green (F(q) ≈ 0). The
first criterion, (5.7a), is seen to be satisfied for solutions on the upper-left-hand side of the line
‘V (ξ = 0) = 0’ in the (Bϕ, Bp)-plane. The second criterion (5.7b), with (5.9b), is somewhat
similar in behaviour. The third criterion, (5.7b) with (5.9c), is verified except for the lowest
levels of the boundary heat flux. The fourth criterion, (5.7c), holds for all the solutions tested.

characterizes the acoustic part of the flow. These solutions are located on the right-
hand side of the straight line ‘V (ξ = 0) = 0’ which separates solutions characterized
by a negative and positive values of the velocity at the origin (see figure 6). The LMJ
solution of figure 4 belongs to this region of the chart. However solutions obtained
either with a small heat flux or a large pressure at the origin satisfy this criterion.
The second criterion, (5.7b) with (5.9b), displays a similar behaviour: the straight line
‘V (ξ = 0) = 0’ discriminates solutions with a strongly stratified hot-flow region (on
the lower-right-hand side of the line) from those with a weakly stratified hot region
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(on the upper-left-hand side of the line). The third criterion in terms of (5.9c) shows
that the stratification of the cold region is always negligible, even for solutions in the
LMJ energy range. Criterion (5.7b) with (5.9a) has been found to be satisfied (not
shown here) for all the solutions of the chart in figure 6. The same conclusion holds
for the criterion approximation based on the Péclet number, (5.7c) hereby meaning
that the hydrodynamic hypothesis is valid for all the investigated self-similar flows.
In particular, solutions studied in § 4.2.1 (figure 8) mostly satisfy the five criteria (5.7)
with (5.9), except for the solution with the smallest value of Bp .

As a result, self-similar ablation flows obtained within the framework of the present
hypotheses (electron heat conduction, growing heat flux at the boundary, etc.) for
large heat fluxes and not too large pressures at the boundary do not satisfy the low-
Mach-number approximation criteria. This is, in particular, the case for deflagration
density-invariant self-similar solutions obtained for energies in the range of the LMJ
facility. Such flows cannot be approximated by the low-Mach-number approximation,
i.e. by means of a stationary quasi-incompressible flow. As a result, we must check
stratification criteria (5.9) in each region of an ablation flow prior to the use of the
LM approximation, including for flows relevant to the acceleration phase in ICF.

6. Conclusion
We have detailed some properties of self-similar solutions for inviscid compressible

ablative flows in slab symmetry with nonlinear heat conduction relevant to
inertial confinement fusion. A sophisticated and reliable auto-adaptive Chebyshev
multidomain method has been devised in order to solve the nonlinear eigenvalue
problem resulting from the application of the two-parameter Lie group symmetry.
A sub-family which leaves the density invariant is detailed since these solutions
may be used to model the ‘early-time’ period of an ICF-implosion where a shock
wave travels from the front to the rear surface of the target. A physical analysis of
these unsteady ablation flows has been provided where solutions are characterized
by dimensionless numbers (Mach, Froude and Péclet numbers). In particular, a chart
allowing us to determine the starting point of a numerical solution, knowing the
physical boundary conditions, has been built with over 300 self-similar solutions.
These solutions correspond to ablative flows of a monatomic gas (γ = 5/3) owing
to electron heat conduction according to the Spitzer–Harm model (nonlinear heat
conduction exponents µ = 0 and ν = 5/2; see Duderstadt & Moses 1982). These
assumptions are characteristic of the ablation of a low-atomic-number material by
a direct laser illumination – the so-called direct-drive scheme for ICF. Furthermore,
an approximate scaling law, which connects the absolute Mach number of the flow
at the ablation front, to the heat flux at the origin is given. These solutions are
typically characterized by moderate Froude and Péclet numbers in the shocked-fluid
region. We have also shown that self-similar ablation fronts generated within the
framework of the present hypotheses (electron heat conduction, growing heat flux
at the boundary, etc.) and for large heat fluxes and not too large pressures at the
boundary do not satisfy the low-Mach-number criteria. This is, in particular, the case
for self-similar solutions obtained for energies in the range of the Laser MegaJoule
laser facility. Consequently these flows cannot be approximated by the low-Mach-
number approximation, i.e. by means of a stationary quasi-incompressible flow, as is
often assumed in inertial confinement fusion. The Mach numbers of these flows are
not low enough and stratification of the hot region cannot be neglected.
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Two particular solutions of this family have been used for studying stability
properties of ablation flows (Abéguilé et al. 2006; Clarisse et al. 2006; Lombard
et al. 2007). Solutions representative of various ablation flows (radiation heat wave,
quasi-incompressible, etc.) could be modelled with such time-dependent solutions
through variations of the fluid parameters, i.e. the exponents of the nonlinear heat
conduction and of the equation of state. Investigation of such solutions is underway.
Stability analyses based on these unsteady self-similar mean flows will be reported in
detail in forthcoming papers.

We would like to acknowledge Messrs N. Salaün and A. Boutboul for having
carried out parametric studies of self-similar solutions.

Appendix A. Rankine–Hugoniot jump relations
For the configuration of ablative flows in the deflagration regime, an isothermal

shock wave penetrates the cold medium, followed by a thermal front. For a shock-
compressed fluid region dominated by convection effects, as is the case here, the
thickness of the isothermal shock wave is very small and the combination of
the isothermal shock wave and the thermal front may be described by a perfect
discontinuity (Marshak 1958). Within this approximation, the Rankine–Hugoniot
conditions for a planar shock wave (Germain & Muller 1994) penetrating a cold
medium at rest (T = Tu = 0) may be written as:[

ρux

]U

D
= 0, (A1a)

[
ρuxvx − p

]U

D
= 0, (A1b)

[(
p

γ − 1
+

1

2
ρv2

x

)
ux − pvx

]U

D

+ ϕxD = 0, (A1c)

with the relation ux = wx − vx , wx being the front velocity in the chosen frame of
reference. Downstream and upstream – with respect to the shock front – values of
flow quantities are distinguished by, respectively, the subscripts D and U.

The mean-flow jump relations (A1) applied to the self-similar solution (2.9) with
an upstream state given by (GU VU PU ) ≡ (1 0 0), lead to (2.23) for the downstream
values of the self-similar functions G, V and P. When omitting the downstream heat
flux, ϕxD , we recover the classical Rankine–Hugoniot relations under the form

GD =
γ + 1

γ − 1
, VD =

2

γ + 1
W, PD =

2

γ + 1
W 2, (A2)

where the self-similar shock-front velocity is defined by (2.25).

Appendix B. Numerical method
The nonlinear eigenvalue problem (2.17) with the boundary conditions (2.21)

and (2.22) is integrated with the following five stage numerical procedure
(Boudesocque-Dubois 2000; Gauthier et al. 2005):

(a) Backward finite-difference integration. The boundary conditions (2.21) and the
Rankine–Hugoniot relations without conduction (A2) give a starting value for (G V �)
at ξ−

s . Integrating (2.17) without heat conduction, by means of a Runge–Kutta scheme,



Self-similar solutions of ablative flows 175

from ξ−
s to ξ+

f yields
(
G(ξ+

f ) V (ξ+
f ) �(ξ+

f )
)
, the values at ξ−

f being evaluated by

continuity, while �(ξ−
f ) is estimated with �(ξ−

f ) = −
(
G1−µ�ν(d�/dξ )

)
(ξ−

f ). System
(2.17) is then integrated from ξ−

f to 0.
This way of proceeding provides a first guess at a solution which depends on the

two parameters ξf and ξs – these parameters having to be adjusted for recovering the
values (2.20) of Bp and Bϕ .

(b) Forward finite-difference integration. Starting with the estimate Y (0), system
(2.17) is forward-integrated from 0 up to a certain point ξ(?). This point ξ(?) is adjusted
to provide the best approximation of the Rankine–Hugoniot relations, measured by
the absolute error on the values of (G V �) at the point ξ+

s , ERH . The resulting value of
ξ(?) defines a new value for the shock-wave front location ξs . This forward integration
is stable and provides an approximation typically characterized by a relative error of
the order of 10−3.

(c) Forward finite-difference integration on a multidomain spectral grid. In order to
obtain more accurate approximations, we choose to use a collocation spectral method
(Peyret 2002). Consequently, we must obtain a numerical approximation of the
solution on a spectral grid. In effect, the integration domain [0, ξs] is decomposed
into N contiguous subdomains [ai, bi], i = 1, . . . , N, a1 = 0, bN = ξs , of Ni

collocation points defined by mapping the set of Ni Gauss–Lobatto collocation
points with a coordinate transform (Gauthier et al. 2005).

The solution is thus estimated on this spectral grid with the previously used Runge–
Kutta scheme. The subdomain interface locations and the mapping parameters are
dynamically adapted by minimizing a norm of the computed solution (Renaud &
Gauthier 1997).

(d) Relaxation process. The next stage consists in applying a relaxation method
(Orszag 1980) to system (2.17) written under the form LY = f . The corresponding
iterative method is written as

Y (n+1) = Y (n) − aL−1
prec

(
LspY (n) − f

)
, n � 0, (B1)

with a chosen such that 0 < a < 2/(m + M), where m and M are the smallest and
the largest eigenvalue of |L−1

prec Lsp|. The matrix Lsp is the Chebyshev approximation
of the operator L, and Lprec is the corresponding preconditioning operator, taken
initially to be Lsp (Gauthier 1988). This last operator depends on the values of Y , and
its evaluation on each subdomain, at each iteration, is costly in terms of computational
time. Therefore, L−1

sp is evaluated only when the spectrum of L−1
prec Lsp becomes too

wide. The above iterative process (B1) is applied on each subdomain, for increasing
subdomain index, i.e. for increasing abscissa ξ . The first subdomain resolution includes
the boundary conditions at ξ = 0. For the other subdomains, continuity of Y at each
subdomain interface location is imposed. This iterative method gives a good estimate
of the solution, the absolute error being close to machine precision (10−11 in our case),
except around the subdomain interfaces where the error is about 100 times larger.
However, the Rankine–Hugoniot relations are only satisfied with an error ERH of the
order of 10−4.

(e) Boundary condition optimization. In order to improve the approximation of the
Rankine–Hugoniot relations, we introduce, as an ultimate stage, a recursive process
for modifying the boundary condition value at the origin. This process amounts to
the recursion

Y |(n+1)
ξ=0 = Y |(n)

ξ=0 + εRH (n), (n � 0), (B2)
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Figure 11. Global validation of the numerical method: comparison between the results
computed by a Lagrangian finite-volume numerical method at different times (dashed lines)
and the self-similar solution obtained with the spectral method (solid line). (a) The full density
profiles and (b) the vicinity of the shock wave. The number of cells corresponding to the
finite-volume computed solutions at each different time is also indicated.

where the free parameter ε is a diagonal matrix, with diagonal elements taken in the
interval

[
0.2 × 10−4, 10−1

]
. This iterative process, while maintaining the same relative

error level on the subdomains, allows us to divide the error ERH by a factor of 10.
The validation of the numerical method and the numerical code has been carried out

in several ways. The main ingredients of the numerical method in stages (a)–(c) have
been designed in order to obtain a sufficiently accurate guess for the relaxation process
described in step (d). This relaxation process is routinely used for solving Helmholtz
problems, with spectral or finite-difference preconditioning, which arise from implicit
treatments of diffusive terms. An example of the convergence history of the relaxation
process for the first-order differential operator and spectral preconditioning (B1) is
provided in Gauthier et al. (2005).

The capability of this self-adaptive method has been checked on several fluid
dynamics problems: (i) a one-dimensional initial- and boundary-value problem
(IBVPs) – a rippled shock wave case – governed by Euler’s equations and for which
the exact solution is known; (ii) the stability analysis of the compressible Rayleigh-
Taylor flow, governed by the Navier–Stokes equations, which reduces to a generalized
linear eigenvalue problem; and (iii) several two-dimensional IBVPs – simulations
of the Rayleigh–Bénard, Kelvin–Helmholtz and Rayleigh–Taylor flows (Renaud &
Gauthier 1997; Gauthier et al. 2005; Lafay, Le Creurer & Gauthier 2007).

A global validation of the method has also been carried out in the present case
by comparing spectral results with those obtained from a Lagrangian finite-volume
method (Boudesocque-Dubois & Clarisse 2007). This latter method solves IBVPs
for the Euler equations with nonlinear heat conduction (2.1)–(2.4), (2.15), (2.16),
combining, through operator splitting, an explicit Godunov-type scheme for the
hyperbolic part of the system, and an implicit-scheme for the complementary nonlinear
parabolic equation. For illustrative purposes, a steep density gradient ablation flow
has been retained: γ = 5/3, Bp = 0.01297, Bϕ = 0.01 (see figure 8). The IBVP
solution approximations provided at successive instants in time by the finite-volume
method converge towards the self-similar solution spectral approximation (figure 11).
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